
The CEFIA Flagship Webinar : Biochar on 15 January 2024

Carbon sequestration by mixing biochar into concrete

Shinya Yamamoto

Center for Social System Engineering, Institute of Technology, Shimizu Corporation

Construction projects in ASEAN countries by Shimizu

https://www.shimz.co .jp/works/sg_com_20 2303_panpaci.html https://www.shimz.co.j p/shimizusan/civil/ https://www.shimz.co.jp/company/about /news-release/2022/2022035.html https://www.shimz.co.jp/co mpany/about/newsrelease/2023/2022062.html

Contents

Outline of concrete mixed with biochar

- Kinds of concrete to reduce CO₂
- Feature of biochar concrete

Carbon sequestration by biochar concrete

- Why mixing biochar leads to carbon sequestration
- Biochar mixed into concrete
- CO₂ calculation method
- Carbon credit

Characteristics as an industrial product

- Mix design
- Manufacturing
- Performance as a concrete
- Application to pavement
- ASEAN opportunity
- Summary

Outline of concrete mixed with biochar

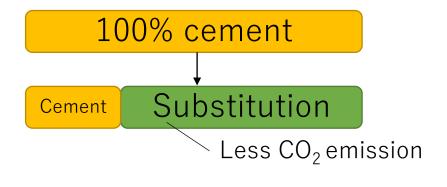
Eco-friendly concrete to reduce CO₂

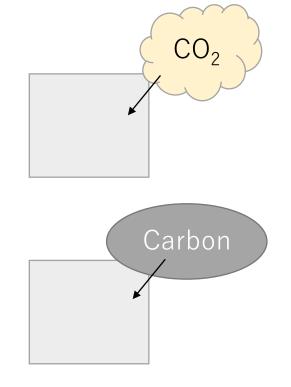
Using Low carbon cement

 \triangle Workability

× Carbon neutral

Artificially carbonated concrete


riangle Cost


Available only for precast products

Storing carbon into concrete

Concrete mixed with biochar

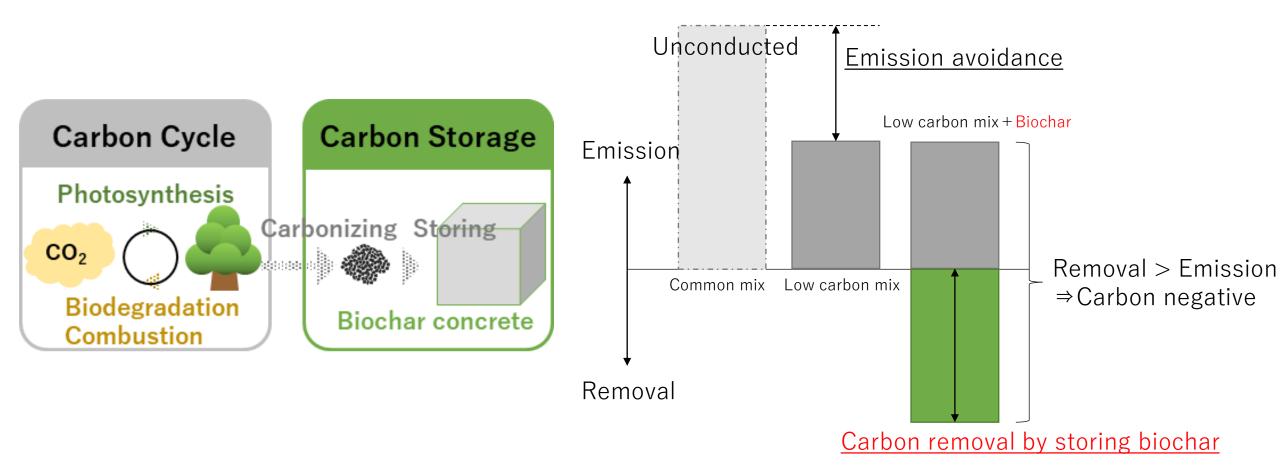
Concrete mixed with calcium carbonate

Easy to use

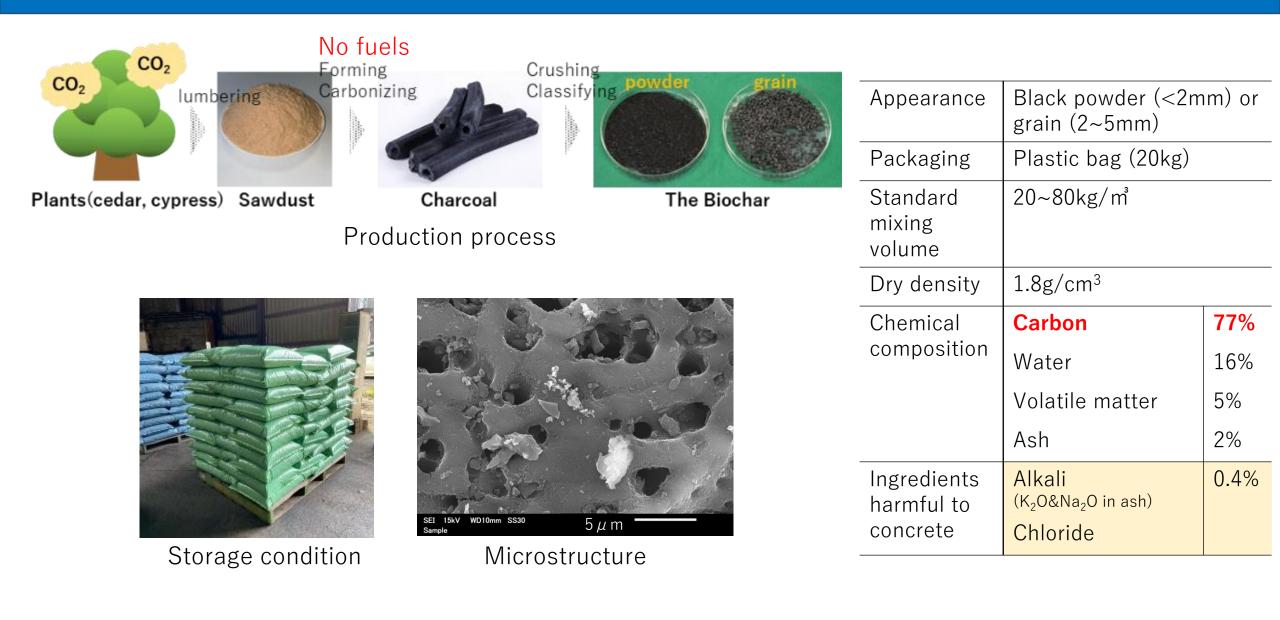
Manufacturable at any plants and castable on construction sites
 Performance can be made equal to general concretes

Efficient carbon removal

Effective carbon dioxide fixation rate

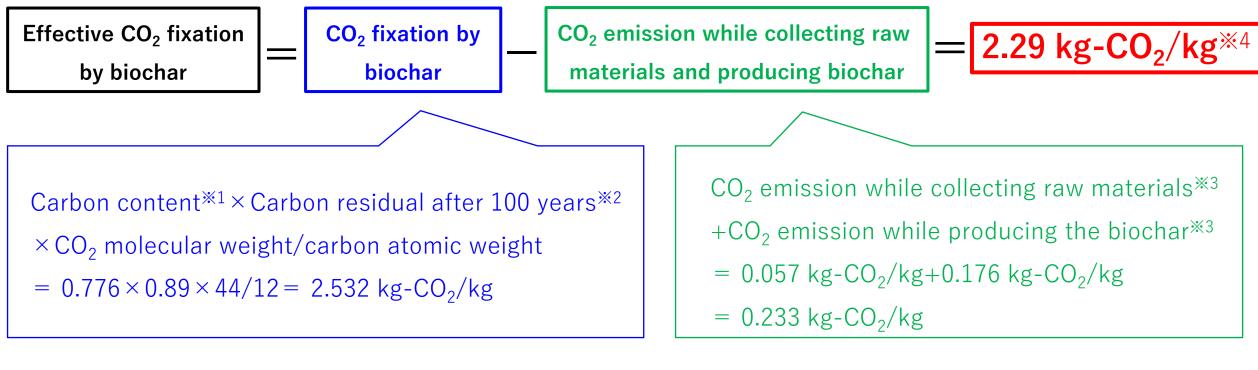

Biochar: 2.29kg-CO₂/kg, Calcium carbonate: 0.44kg-CO₂/kg (under consideration)

Enabling carbon neutral/negatives


- Not an emission avoidance but carbon removal
- If CO₂ removal by biochar exceeds emission from concrete materials, the concrete itself is carbon negative.

Carbon sequestration by biochar concrete

Carbon removal by biochar concrete



Overview of the mixed biochar

Effective CO₂ fixation by biochar

Following '2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories'

※1: Based on test results of the biochar※2: Value when storing the biochar to soils

※3: Calculated from fossil fuels and electricity used in the production of biochar

%4 : In case of biochar under consideration

Voluntary carbon credit

Biochar Concrete Applications by Carbonex —Certified by Carbonfuture

© Lasts for more than 100 years 〒 Project capacity: 88.91 tCO₂e · 95% utilized ⊙ Western Europe

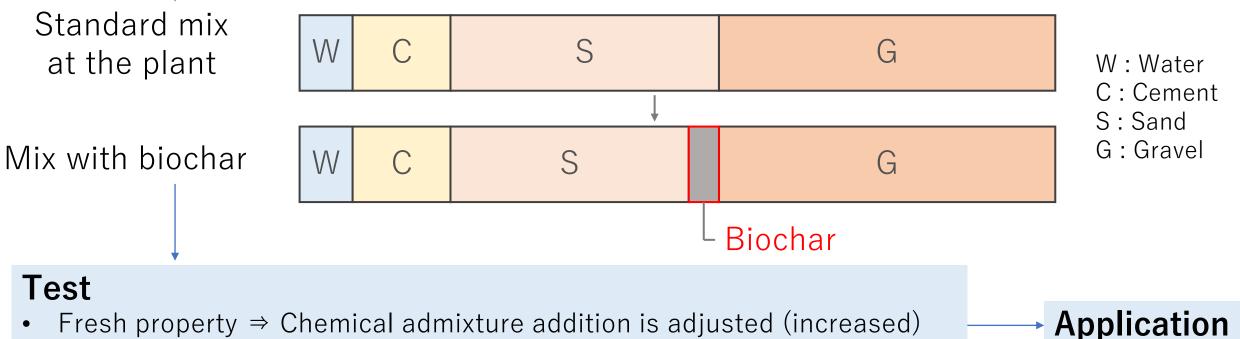
🗉 Methodology: EBC-Sink 🖸

Capacity

Total and sold capacity of the project in tonnes CO2 equivalent:

	95%
0 tCO ₂ e	88.91 tCO ₂ e
3.96 tCO2e of this portfolio are still available!	

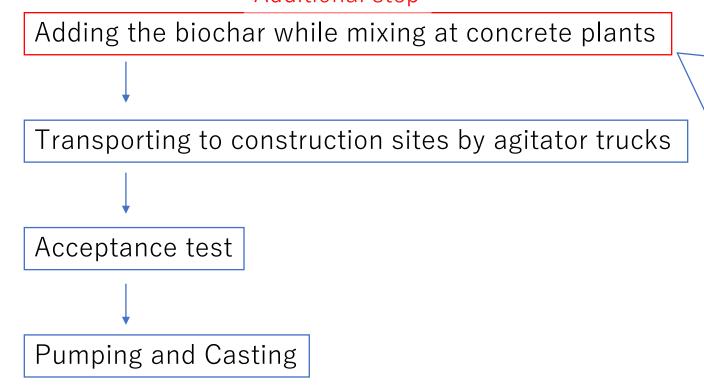
Price per tonne:	
€214.20 (incl. 19% VAT)	Credit price : 214 €/t-CO ₂
Buy your share	
Enquiry ⑦	
inquiry 🕁	
Get Started	
Get Started	

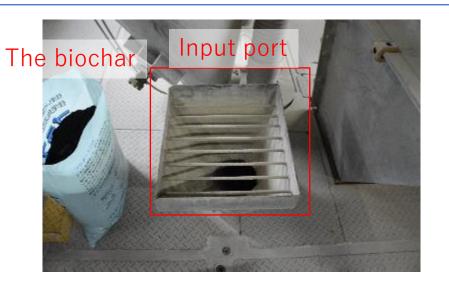

https://platform.carbonfuture.earth/balancer/portfolios/view/main/3a3e64c4-22c6-49e1-95f0-e32841763c07

Characteristics as an industrial product

Mix design

Required specification


- Fresh property
- Compressive strength
- Durability



Compressive strength ⇒ Confirmed to perform enough strength

Manufacturing

Almost same as common concrete production methods

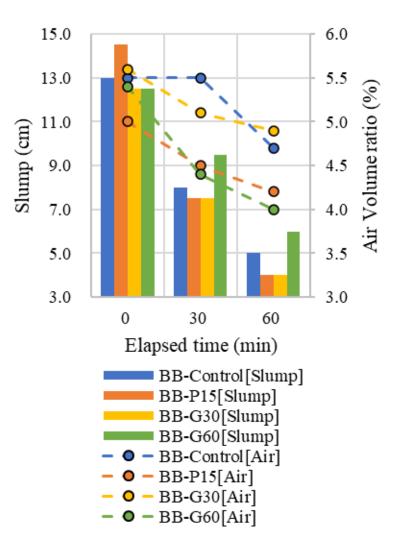
Biochar is bagged 20 kg each Addition is controlled with the number of bags

Additional step

Performance of the biochar concrete 1

15

Test Mix Powder Grain											
	[/	Mat	erials				CO		ition
Concrete Mix	Blast furnace slag cement (Type B)	Water	Biochar (Powder)	Biochar (Grain)	Crashed sand	Mountain sand	Crashed stone	Water reducer	CO ₂ emission from materials other than biochar	CO ₂ fixation by biochar	Total CO ₂ emission as concrete
	(kg/m^3)	(kg/m^3)	(kg/m^3)	(kg/m^3)	(kg/m^3)	(kg/m ³)	(kg/m^3)	(C×%)	(kg/m^3)	(kg/m^3)	(kg/m ³)
BB-Control	307	169	0	0	327	491	1008	0.8	141	0	141
BB-P15	307	169	15	0	317	476	1008	1.4	141	34	107
BB-G30	307	169	0	30	307	461	1008	1.0	141	69	72
BB-G60	307	169	0	60	288	432	1008	1.5	141	138	3

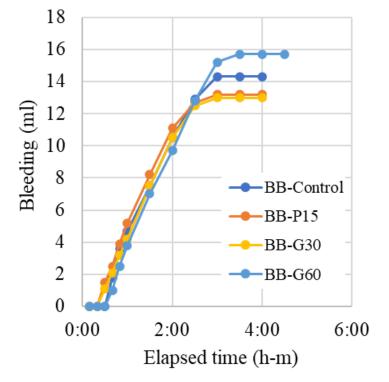

BB means Blast furnace slag cement type B

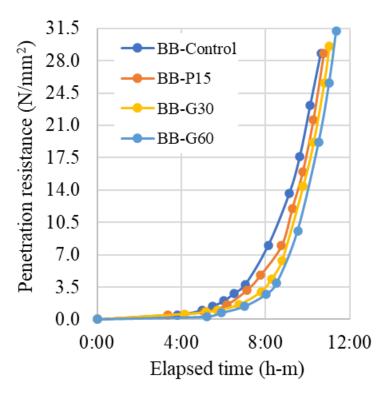
Performance of the biochar concrete (2)

<u>Test Mix</u>

Concrete	Biochar	ochar Biochar CO ₂ CO ₂		CO ₂	Total CO ₂
Mix	(Powder)	(Grain)	emission	fixation	emission
			from	by	as
			materials	biochar	concrete
			other than		
			biochar		
	(kg/m^3)	(kg/m^3)	(kg/m^3)	(kg/m^3)	(kg/m^3)
BB-Control	0	0	141	0	141
BB-P15	15	0	141	34	107
BB-G30	0	30	141	69	72
BB-G60	0	60	141	138	3

Fresh property test

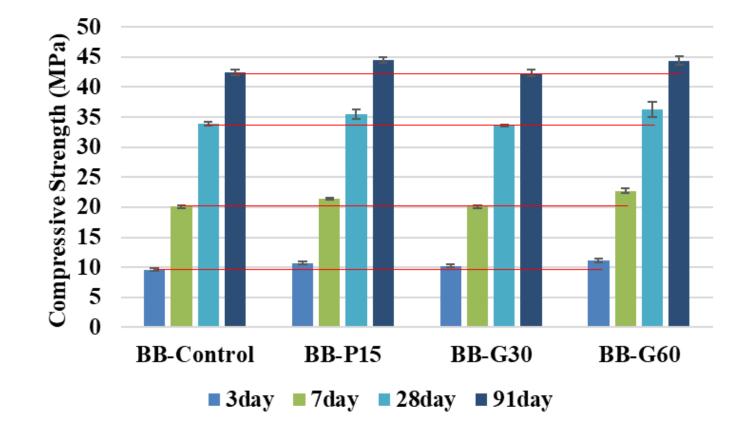

Performance of the biochar concrete ③


<u>Test Mix</u>

<u>Bleeding test</u>

<u>Setting test</u>

Concrete	Biochar	Biochar	CO ₂	CO ₂	Total CO ₂
Mix	(Powder)	(Grain)	emission	fixation	emission
			from	by	as
			materials	biochar	concrete
			other than		
			biochar		
	(kg/m^3)	(kg/m^3)	(kg/m^3)	(kg/m^3)	(kg/m^3)
BB-Control	0	0	141	0	141
BB-P15	15	0	141	34	107
BB-G30	0	30	141	69	72
BB-G60	0	60	141	138	3

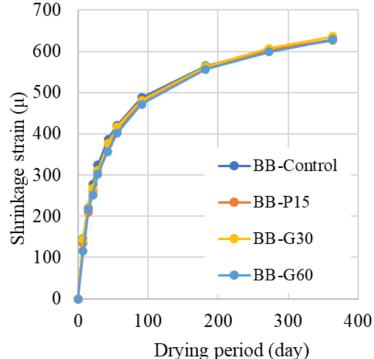


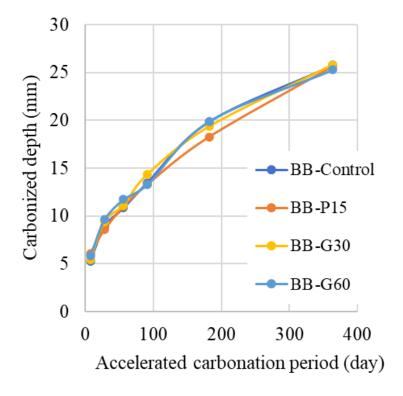
Performance of the biochar concrete (4)

<u>Test Mix</u>

<u>Compressive strength test</u>

Concrete	Biochar	Biochar	CO ₂	CO ₂	Total CO ₂
Mix	(Powder)	(Grain)	emission	fixation	emission
			from by		as
			materials biochar other than biochar		concrete
	(kg/m^3)	(kg/m^3)	(kg/m^3)	(kg/m^3)	(kg/m^3)
BB-Control	0	0	141	0	141
BB-P15	15	0	141	34	107
BB-G30	0	30	141	69	72
BB-G60	0	60	141	138	3


Performance of the biochar concrete (5)


<u>Test Mix</u>

Dry shrinkage test

<u>Accelerated</u> <u>carbonation test</u>

Concrete	Biochar	Biochar	CO_2	CO_2	Total CO ₂
Mix	(Powder)	(Grain)	emission	fixation	emission
			from by		as
			materials biochar		concrete
			other than		
			biochar		
	(kg/m^3)	(kg/m^3)	(kg/m^3)	(kg/m^3)	(kg/m^3)
BB-Control	0	0	141	0	141
BB-P15	15	0	141	34	107
BB-G30	0	30	141	69	72
BB-G60	0	60	141	138	3

Application to pavement

20th, Oct, 2022

Unloading Acceptance test

Complete

In use

Concrete Mix	Biochar	CO ₂	CO ₂	Total CO ₂
	(Grain)	emission	fixation	emission
		from	by	as
		materials	biochar	concrete
		other than		
		biochar		
	(kg/m^3)	(kg/m^3)	(kg/m^3)	(kg/m^3)
Original	0	199	0	199
Low carbon	0	143	0	143
Low carbon + Biochar (Applied)	60	143	136	7

Total casted concrete volume : 34.5 m³

Total CO_2 reduction : (199-7) × 34.5 = 6.6 t-CO₂

 CO_2 removal by biochar : $136 \times 34.5 = 4.7 \text{ t-}CO_2$

 CO_2 emission avoidance by low carbon cement : (199-143) × 34.5 = 1.9 t-CO₂

ASEAN opportunity

ASEAN opportunity

Biochar concrete can support biomass utilization without waste

- Jatropha : Oil → Biofuels
- Sorghum : Grain → **Food, Feed**
- Eucalyptus : Timber → Paper pulp ____
 Upstream

Carbon removal

Residue → Carbonized to **Biochar**

through <u>biochar concrete</u>, soil amendment and etc.

Downstream

Summary

Summary

- Purpose of biochar concrete : Carbon removal
- Method : Storing biochar(carbon) into concrete for a long period
- Decarbonizing effect : 2.29kg-CO₂/kg ※
- Performance : Equivalent to the standard mix ※
- Utility : On-site casting and pumping possible 💥
- ASEAN opportunity : Making effective use of unused biomass

※Depends on kind of biochar

Contact Us

https://f.msgs.jp/webapp/form/20233_fydb_7/index.do

