

23rd July 2024 The 6th Government Private Forum on the Cleaner Energy **Future Initiative for ASEAN(CEFIA)**

CEFIA RENKEI Control Flagship Project

RENKEI Control

JEITA RENKEI Control Working Group

Azbil Corp.

Mike Suzuki

Japan Electronics and Information Technology **Industries Association**

Content

- What is **RENKEI** Control?
- **Stakeholders for RENKEI Control Flagship Project**
- What we have done from 2020 to 2023
- Plan for 2024

The Purpose of RENKEI Control

To improve energy efficiency in a short period without changing existing facilities

Applicable Optimization by RENKEI Control

	Category	Applicable Optimization by RENKEI Control
1	Utility Plant	Boiler Plant Optimization
		 Turbine Plant Optimization
		 Boiler Turbine Plant Optimization
		 Co-Generation Plant Optimization
		 Chilled Water Plant Optimization
		 Air Compressor Plant Optimization
2	Utility Plant	 HVAC system in building side
	and	 District Cooling Plant Optimization with Demand
	Demand Side	Prediction for Building Side
		 Utility Plant and Manufacturing Plant
		Total Optimization
		 Smart City (Power and Heat) Total Optimization
	A	

Utility Plants in many kind of industry.

(Steam, Hot Water, Chilled Water, Electricity, Cogeneration)

District Cooling Plant for Buildings

Energy Supplier Energy Consumers

Start from Team Building in Year 2020 (Invitation to Japan)

- We invited government and academic representatives from Indonesia, Thailand, and Vietnam to Japan and conducted the following visits:
- Yokogawa Mitaka office and a tour of the EMS at the Musashino Clean Center.
- Azbil Fujisawa Technology Center and a tour of the BEMS for this center.
- Waseda University Shinjuku Demonstration Center and demonstration of the integration of DR and HEMS.
- Fuji Electric Yamanashi Factory and a tour of the FEMS for this factory.

Capacity Building for University Students through Webinar

Thailand / Indonesia / Vietnam / Malaysia / Philippines

Date	Time		Speaker
	(Thailand		
	Time Zone)		
1st Day		Seminar 1	
	8.00 - 8.20	1.1 Introduction to CEFIA	Ministry of Economy,
			Trade and Industry
	8.20 - 8.35	1.2 Introduction to APAEC and	ASEAN Center for
		Collaboration with CEFIA	Energy (ACE)
	8.35 - 9.35	1.3 Introduction of Digital	Prof. Yoshiharu
		Transformation	Amano, Waseda Univ
	9.50 - 10.50	1.4 Introduction of Instrumentation	Azbil Corporation
		Technology	
2 nd Day		Seminar 2	
	8.00-9.30	2.1 Introduction to RENKEI control	Azbil Corporation
	9.40 - 10.10	2.2 Introduction to subsidies and	Yokogawa Solution
		policy in Japan	Service
	10.10-	2.3 Special Lecture on Energy	Prof. Yoshiharu
	11.00	Management System Shinjuku R&D	Amano, Waseda Univ
		Center and Industrial Open Network	
		Laboratory in Wasseda University	
3 rd Day		Seminar 3	
	8.00-10.00	3.1 Introduction to Feasibility Study	Azbil Corporation
	10.15 -	3.2 Hands-on Training Briefing (Self-	Azbil Corporation
	11.00	Learning)	
4 th Day		Seminar 4	
	8.00 - 9.45	4.1 Potential Survey	TBD
	9.50 - 10.30	4.2 Special Lecture on	Prof. David
		Supervisory model predictive control	Banjerdpongchai,
		of air conditioning system in building	Chulalongkorn Univ.

Continue this Capacity Building through e-learning (Thailand)

From FY2021-FY2023 Total around 100 students got this course.

JEITA Japan Electronics and Information Technology Industries Association The 3 E-learning of RENKEI Control

Harmonization of Equipment for Improvement of Energy Efficiency

Instructors:

Lee Peoy Ying, Azbil Corporation, Japan. Koji Takahashi, Ministry of Economy, Trade and Industry, Japan. Septia Buntara Supendi, ASEAN Centre for Energy, Indonesia. Prof. Yoshiharu AMANO, Waseda University, Japan. Tomoyuki Ikeyama, Yokogawa Corporation, Japan. Prof. David Banjerdpongchai, Chulalongkorn Unibersity, Thailand

Course Highlight

Introduction of Instrumentation Technology Introduction to RENKEI Control Introduction to Feasibility Study (FS) Introduction of Digital Transformation Introduction to subsidies and policy in Japan

Target: Electrical/Mechanical/Chemical Engineers or Interested Learners

1. You can apply this knowledge to your work.

2. Appropriateness of content (e.g. completeness, order of topics, etc.)

Research for Potential CO2 emission reduction by RENKEI Control

Potential to reduce CO2 emission is <u>5 million tons per year</u> from ASEAN region.

Capacity Building through ASEAN University Network(AUN/SEED-Net) supported by JICA

- Project Consortium Name
 - Real Time Utility Network Energy Efficiency Optimization with RENKEI (R-TUNE)
- Consortium Members
 - Universiti Teknologi Malaysia
 - Waseda University Japan
 - De La Salle University Philippines
 - JEITA
- Expected Outcomes
 - Knowledge Transfer Program (RENKEI CONTROL & P-Graph)
 - Assessment Tool to Assess RENKEI control saving potential
 - Detail Feasibility Study Package for RENKEI by P-Graph
 - Capacity Building Program to disseminate these outputs

					RENK	EI Coi	ntrol A	ssessi	nent R	esult						
RENKEI Potential				Expects	d fuel s	ving								Expected CO2 em	ission reduction	
,						THE year Renark						,		kgyur		
Section Compressed Air Header (CAH1) Compressed Air Header (CAH2) Compressed Air Header (CAH3)	Air Conpressor HIGH HIGH LOW				2,308,000)	EXP	ECTED F	IGH ENI	GRY SA	VING	J		473,140		
Part I: General information	n of air compre	ssor (C.	A) syster	n											Preliminary Decis	
Congression system Load optimization No of compression So of compression Bisisting Control Method Turky electricity consumption Electricity conf CO2 emission factor of electricity Varies' Co2 emission Expected average deterricity Unit Coarners' and Compressor Unit Part II: Configuration of a	multiple compressor yes, but interested (9 3 Individual Dischar 5,70,000 0,82 4,731,400 10% f Comrol decides th ir compressor	s o know mo kWh tyr IMB kyr IMB kyr kg kWh kg yr kg yr (CA) sys	control Control	compress] pra by naing	g seguence	logic to in	yrore tota	i efficiency:						PROCEED TO NEXT PART	
Compressed Air Header (CAH)	Info	Cl	C2	сэ	C4	CS	C6	C7	C8	C9	C10	C11	C12	Connection to other		
Compressed Air Header 1 (CAH1)	Type of COMP Control of COMP	S 1	S 1	S 1											HIGH POTENTIAL FOR RENKED	
Compressed Air Header 2 (CAH2)	Type of COMP Control of COMP*				\$ 1	\$ 1	\$ 4								PLEASE PROCEER TO NEXT PART	
Compressed Air Header 3 (CAH3)	Type of COMP							3	3							
Part III: Specific informati Air compressor specification Rated Motor Power Parted Forward Constitu	on of compress	or syste Luis LW Nucl.ts Dar	m <u>C1</u> 37 329.4 3	C2 37 384 8	C3 37 354.6 8	C4 37 354.6 8	C5 55 648 8	C6 55 612 7.5	C7 37 444 7.5	CS 55 612 7.5	C9	C10	C11	C12		
Minimum Operation Pressure																
Ministan Operation Pressure Part IV : Operation Inform	ation											_	_			
Minimum Operation Pressure Part IV : Operation Inform Typical 1 day operation Overation bour	ation	Taik br		Per	ied 1 M											
Minimum Operation Pressure Part IV : Operation Inform Typical 1 day operation Operating hour No of operating compressors	ation	Tak br		Per	lod 1 14 1											
Minimum Operation Pressures Part IV : Operation Inform Typical 1 day operation Operating compressors Average load (1) of operating compressors Average load (1) of operating compressors	ation essor	Tale by 		Per 8	iod 1 14 15% 07											
Minimue Operation Pressure Part IV: Operation Inform Typical 1 day operation Operating house No of operating compresson Average 1 act ("of objecting comp Art Desand Part V: Control System an	ation essor ad Data Monito	tuit br S Nuth		9er 8 3	lod 1 14 19% 07											
Minima Operation Diverse Part IV: Operation Inform Typical Joy operation Operating Your Operating Your Operating Your Operating Your No alonget Source operations Arrange Inde (%) of operating compr Air Denand Part V: Control System an Control system hardware	ation essor ad Data Monito	Tute br Na2th ring	04	Per 8 3	lod 1 19 19% 07	Others		1	No Contra	tol System]				
Minimue Operation Pressues Part IV: Operation Inform Typical 1 day operation Operating how No of operating compresson Average load (%) of operating compres- Average load (%) of operating compresson Part V: Control System an Control system hardware Data monitoring and measuring point	ation essor ad Data Monito	their br S Nucl-fu ring Meas	Oct	Per 3 3 bers Status	lod 1 24 1 2% 07	Others ged Data S	c. tatus		No Contr	tol System Logged da	ata duration]				
Minimum Operation Pressues Part IV: Operation Inform Typical 1440 operation No of operating toop Average lated CP of operating compen- Air/Deanod Part V: Control System an Control system hardwas Data sentioning and messaring point Microsoft desting and messaring point	ation essor ad Data Monito	Tele br Scott Nath ring Meas	Ott ured Data S Yes	Per 3 bers Status	lod 1 24 1 2% 07	Others ged Data S No	c tatus		No Contr	tol System Logged da	ata duration]				
Minima Operation Pressues Part IV: Operation Inform Typical 149 operation No of operating toom No of operating toom Are Deams Are Deams Control System are Control System and Control System Are Control System Andrease Data maniforma and assaulta point Information Information	ation essor ad Data Monite	Tuk br 5 5 Naddh ring Meas	Oti ured Data 3 Yes	Per 8 3 bers	lod 1 N4 1 9% 07	Others ged Data S No No No	tarus		No Contr	rol System Logged da	ata duration]				

RENKEI Control Assessment Tool

Capacity Building for Industries

- Webinar for Thailand with Technology Promotion Association in Thailand (Over 100 Participants from industry side) (FY 2022)
- Presentation at Malaysian Association of Electrical Energy Manager (Mareem) Energy Efficacy Seminar (FY2023)
 - Joint Presentation with UTM (Prof.Sharifah)
- RENKEI Control Webinar for ASEAN (FY2021-2022)
- RENKEI Control Seminar in Thailand and Malaysia (FY2023)

Presentation at International Conference

- CEFIA forum (FY2020-2023)
- COP26/ Japan Pavilion (FY 2021) (Joint presentation with Prof. David Banjerdpongchai (CU))
- 1st Energy Week International Conference (FY2021) at Manila sponsored by ACE and ENAP4.0
- 1st International Conference on Sustainable Chemical, Energy and Environmental Engineering, Malaysia (FY2022)
- International Seminar on Chemical, Food, and Chemurgy Engineering Soehadi Reksowardojo (STKSR) (FY 2023)

Information sharing with ASEAN Government and ACE

- Thailand (FY2023)
 - Department of Alternative Energy Development and Efficiency (DEDE) Strategy and Planning Division
 - Agenda (CEFIA and RENKEI Control / Current Energy Efficiency Policy / Discussion about collaboration)
- Malaysia (FY2023)
 - Suruhanjaya Tenaga (Energy Commission) Energy Efficiency & Conservation (EE&C)
 - Agenda (CEFIA and RENKEI Control / Current Energy Efficiency Policy / Discussion about collaboration)
- Asean Center for Energy (FY 2022)

Demonstration Feasibility Study

- Indonesia Fertilizer Plant (Estimated CO2 Emission Reduction 8,000t-CO2/Year)
- Thailand Food Factory (Estimated CO2 Emission Reduction 900t-CO2/Year)
- Malaysia District Cooling (Estimated CO2 Emission Reduction 4,000t-CO2/Year)

Estimate size of CO2 emission reduction from Feasibility Study

IEC standard for FEMS which include RENKEI Control

- The FEMS international standard was published in Sept. 2023
 - IEC 63376 INDUSTRIAL FACILITY ENERGY MANAGEMENT SYSTEM (FEMS)
- FEMS can accelerate whole optimization with supporting RENKEI control.

Capacity Building for Energy Auditor and Energy Manager (RENKEI Control Training Program)

- Develop RENKEI Control Training Program Course for Energy Auditor and Energy Manager
- Develop RENKEI Control Assessment and Feasibility Study Tool which can be used by Energy Manager
- Workshop for Energy Auditor and Energy Manager

Why Energy Auditor and Energy Manager?

Because Energy Efficiency laws and regulation often include following obligation.

- 1) Assign Energy Manager
- 2) Conduct Energy Audit
- 3) Reporting Energy Consumption and GHG emission
- 4) Improvement Plan for Energy Efficiency

Energy Efficiency and Conservation Act in Malyaia (Large Energy Consumer)

Energy Manager for Industries and Commercial Building

Provide Training For RENKEI Control

Optimal Systems Engineering (OPTIMISE) UTM spinoff company in Malaysia and a registered as an energy services company (ESCO)

Thank you for listening

